17th IEEE International Conference on Machine Learning and Applications

Unsupervised Anomaly Detection in Energy Time Series Data using Variational Recurrent Autoencoders with Attention

João Pereira & Margarida Silveira

Signal and Image Processing Group Institute for Systems and Robotics Instituto Superior Técnico (Lisbon, Portugal)

Orlando, Florida, USA December 19th, 2018

Introduction

Anomaly detection is about finding patterns in data that do not conform to *expected* or *normal* behaviour.

Main Challenges

▶ Most data in the world are **unlabelled**

Dataset
$$\mathcal{D} = \left\{ \left(\mathbf{x}^{(i)}, \mathbf{y}^{*^{(i)}} \right) \right\}_{i=1}^{N}$$
 anomaly labels

 Annotating large datasets is difficult, time-consuming and expensive

▶ Time series have temporal structure/dependencies

$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T)$$
, $\mathbf{x}_t \in \mathbb{R}^{d_{\mathbf{x}}}$

The Principle in a Nutshell

► Based on a Variational Autoencoder¹²

¹Kingma & Welling, Auto-Encoding Variational Bayes, ICLR'14

²Rezende et al., Stochastic Backpropagation and Approximate Inference in Deep Generative Models, ICML'14

The Principle in a Nutshell

- ▶ Train a VAE on data with mostly **normal** patterns;
- It reconstructs well normal data, while it fails to reconstruct anomalous data;
- ▶ The quality of the reconstructions is used as anomaly score.

¹Kingma & Welling, Auto-Encoding Variational Bayes, ICLR'14

²Rezende et al., Stochastic Backpropagation and Approximate Inference in Deep Generative Models, ICML'14

Learning temporal dependencies $\mu_{x_1} b_{x_2} \mu_{x_3} b_{x_4} \mu_{x_7} b_{x_5}$

Bidirectional Long-Short Term Memory network

$$\mathbf{h}_t = \left[\overrightarrow{\mathbf{h}}_t; \overleftarrow{\mathbf{h}}_t\right]$$

▶ 256 units, 128 in each direction

▶ Sparse regularization, $\Omega(\mathbf{z}) = \lambda \sum_{i=1}^{d_{\mathbf{z}}} |z_i|$

Hochreiter et al., Long-Short Term Memory, Neural Computation'97

Graves et al., Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition, ICANN'05

Reconstruction $\mu_{\mathrm{x}_1}\,b_{\mathrm{x}_1}\,\mu_{\mathrm{x}_2}\,b_{\mathrm{x}_2}\,\mu_{\mathrm{x}_3}\,b_{\mathrm{x}_3}\,\mu_{\mathrm{x}_T}\,b_{\mathrm{x}_T}$

Variational Latent Space

Variational parameters derived using neural networks

$$(\boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\sigma}_{\mathbf{z}}) = \operatorname{Encoder}(\mathbf{x})$$

Sample from the approximate posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$

$$\mathbf{z} = \boldsymbol{\mu}_{\mathbf{z}} + \boldsymbol{\sigma}_{\mathbf{z}} \odot \boldsymbol{\epsilon} \qquad \boldsymbol{\epsilon} \sim \operatorname{Normal}(\mathbf{0}, \mathbf{I})$$

Kingma & Welling, Auto-Encoding Variational Bayes, ICLR'14

Combines self-attention with variational inference.

$$\mathbf{c}_t^{\text{det}} = \sum_{j=1}^T a_{tj} \mathbf{h}_j \qquad (\boldsymbol{\mu}_{\mathbf{c}_t}, \boldsymbol{\sigma}_{\mathbf{c}_t}) = \text{NN}(\mathbf{c}_t^{\text{det}}), \quad \mathbf{c}_t \sim \text{Normal}(\boldsymbol{\mu}_{\mathbf{c}_t}, \boldsymbol{\sigma}_{\mathbf{c}_t}^2 \mathbf{I})$$

Vaswani et al., Attention is All You Need, NIPS'17

Loss Function

$$\mathcal{L}(\theta,\phi;\mathbf{x}^{(n)}) = -\mathbb{E}_{\mathbf{z}\sim\tilde{q}_{\phi}(\mathbf{z}|\mathbf{x}^{(n)}), \mathbf{c}_{t}\sim\tilde{q}_{\phi}^{a}(\mathbf{c}_{t}|\mathbf{x}^{(n)})} \Big[\log p_{\theta}(\mathbf{x}^{(n)}|\mathbf{z},\mathbf{c})\Big] + \lambda_{\mathrm{KL}} \Bigg[\mathcal{D}_{\mathrm{KL}}\Big(\tilde{q}_{\phi}(\mathbf{z}|\mathbf{x}^{(n)}) \| p_{\theta}(\mathbf{z})\Big) + \eta \sum_{t=1}^{T} \mathcal{D}_{\mathrm{KL}}\Big(\tilde{q}_{\phi}^{a}(\mathbf{c}_{t}|\mathbf{x}^{(n)}) \| p_{\theta}(\mathbf{c}_{t})\Big)\Bigg]$$

 $[\]mathcal{D}_{\mathrm{KL}}$ denotes the Kullback-Leibler Divergence

 $[\]mathcal{D}_{\mathrm{KL}}$ denotes the Kullback-Leibler Divergence

Optimization & Regularization

- About 270k parameters to optimize
- ► AMS-Grad optimizer³
- ► Xavier weight initialization⁴
- ▶ Denoising autoencoding criterion⁵
- ▶ Sparse regularization in the encoder Bi-LSTM⁶
- ► KL cost annealing⁷
- ► Gradient clipping⁸

Training executed on a single GPU (NVIDIA GTX 1080 TI)

³Reddi, Kale & Kumar, On the Convergence of Adam and Beyond, ICLR'18

⁴Bengio et al., Understanding the Difficulty of Training Deep Feedforward Neural Networks, AISTATS'10

⁵Bengio et al., Denoising Criterion for Variational Auto-Encoding Framework, AAAI'17

⁶Arpit et al., Why Regularized Auto-Encoders Learn Sparse Representation?, ICML'16

⁷Bowman, Vinyals et al., Generating Sentences from a Continuous Space, SIGNLL'16

⁸Bengio et al., On the Difficulty of Training Recurrent Neural Networks, ICML'13

► Use the **reconstruction error** as anomaly score.

Anomaly Score =
$$\mathbb{E}_{\mathbf{z}_l \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \Big[\|\mathbf{x} - \underbrace{\mathbb{E}[p_{\theta}(\mathbf{x}|\mathbf{z}_l)]}_{\mu_{\mathbf{x}}} \|_1 \Big]$$

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \operatorname{Normal}(\boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\sigma}_{\mathbf{z}}^{2}\mathbf{I})$$

 $\mathbf{z}_{l} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$

▶ Use the **reconstruction error** as anomaly score.

Anomaly Score =
$$\mathbb{E}_{\mathbf{z}_l \sim q_\phi(\mathbf{z}|\mathbf{x})} \Big[\|\mathbf{x} - \underbrace{\mathbb{E}[p_\theta(\mathbf{x}|\mathbf{z}_l)]}_{\mu_{\mathbf{x}}} \|_1 \Big]$$

► Take the variability of the reconstructions into account.

Anomaly Score =
$$-\underbrace{\mathbb{E}_{\mathbf{z}_l \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p(\mathbf{x}|\mathbf{z}_l) \right]}_{\text{"Reconstruction Probability"}}$$

 $q_{\phi}(\mathbf{z}|\mathbf{x}) = \operatorname{Normal}(\mu_{\mathbf{z}}, \sigma_{\mathbf{z}}^2 \mathbf{I})$
 $\mathbf{z}_l \sim q_{\phi}(\mathbf{z}|\mathbf{x})$

Experiments & Results

Time Series Data

Solar PV Generation

(Production in a day without clouds)

Provided by

c side

- Recorded every 15min (96 samples per day)
- Data normalized to the installed capacity
- Daily seasonality
- Unlabelled

Variational Latent Space

z-space in 2D ($\mathcal{X}_{\mathrm{train}}^{\mathrm{normal}})$

$$\begin{array}{c} T = 32 \; (< 96) \\ d_{z} \; = \; 3 \\ \text{online mode} \end{array}$$

Finding Anomalies in the Latent Space

Reconstruction Error

-Reconstruction Probability

(top bar)

(bottom bar)

Examples

<i>a</i> 11	<i>a</i> ₁₂	a ₁₃	<i>a</i> 1 <i>T</i>
a_{21}	a ₂₂	a_{23}	a_{2T}
a ₃₁	a ₃₂	a ₃₃	a _{3T}
a_{T1}	a _{T2}	<i>a</i> _{T3}	a_{TT}

- ▶ Effective on detecting anomalies in time series data;
- ► Unsupervised;
- ► Suitable for both **univariate and multivariate** data;
- ▶ Efficient: inference and anomaly scores computation is fast;
- General: works with other kinds of sequential data (e.g., text, videos);
- ▶ Exploit the usefulness of the **attention maps** for detection;
- ▶ Make it robust to changes of the normal pattern over time.

Thank you for your attention!

mail@joao-pereira.pt
www.joao-pereira.pt

